
The Electronic Spectra of Diphenylmethyl Carbonium Ions

By A. Atkinson,* A. C. Hopkinson, and E. Lee-Ruff, Department of Chemistry, York University, 4700 Keele Street, Downsview 463, Ontario, Canada

The energies of the first band in the electronic absorption spectra of a series of diphenvlmethyl cations have been found to correlate with the Taft substituent constants, σ^* . This has led to the prediction of σ^* values for the cyclopropyl, hydroxy-, propynyl, and carboxy-groups.

A CORRELATION has been observed ¹ between the energy of the first electronic absorption band near 620 nm and the Hammett σ -value for the substituents on the phenyl ring of Malachite Green (I). A similar correlation has also been found between the energy of the second electronic transition and the Hammett σ -values for 3and 5-substituents in the hydroxyphenyl rings of a phthalein monopositive ion (II).²

Both transitions are believed to involve the movement of electrons towards the central carbon atom.² In the case of the Malachite Green-type structures, the transition is from the two NN-dimethylaminophenyl rings and, in the phthalein, from the carboxyphenyl ring. In both instances placing more electron-withdrawing groups in the rings not directly involved in the transition lowers the energy of the transition.

The electronic spectra of several diphenylmethyl cations have been investigated over a wide range of aqueous sulphuric acid solutions and exhibit negligible solvent shifts.^{3,4} The spectra are of the form shown in Figure 1.

In accordance with previous analyses,^{5,6} the first band in these spectra should correspond to the shift of electrons from the two phenyl rings to the central carbon atom. If this is correct then electron-withdrawing groups attached to the central carbon atom will lower the energy of the transition. It was decided therefore to look for a correlation between the electron-withdrawing ability in the form of the Taft polar substituent constants σ^* and the energy of the highest-wavelength transition

(see Table 1). The system chosen, PhoCX, had no substituents in the two phenyl rings.

The value of ρ^* , obtained from the slope of the plot of the transition energy versus σ^* (see Figure 2), is -2.43×10^3 cm⁻¹ (correlation coefficient 0.91). This is

larger than the ρ values for phenolphthaleins ² (-1.27 \times imes 10³ cm⁻¹), phenolsulphonophthaleins ² (-1·36 imes 10³ cm⁻¹), and the Malachite Green ions ¹ (-6.5×10^2 cm⁻¹),

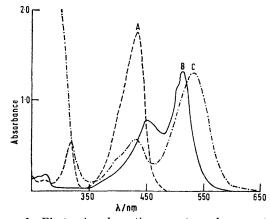


FIGURE 1 Electronic absorption spectra of some typical diphenylmethyl cations, $Ph_{a}CX$: A, X = Et; B, X = $\cdot C$ CPh; C, X = CO₂Me

indicating that the introduction of electron-donating groups into the diphenylmethyl carbonium ions has a greater effect than their introduction into the phenolphthaleins, the phenolsulphonophthaleins, and the Malachite Green ions.

TABLE 1

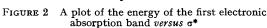
Spectral data for diphenylmethyl carbonium ions, Ph₂CX

1		1 5	2	
		Highest		_
		observed		Energy of
		wavelength,		transition
X	σ* "	$\lambda_{max.}/nm$	log ε	(×10 ⁻⁴ cm ⁻¹)
Me	0.00	425 ^b		$2 \cdot 353$
н	0.49	440 ^b		$2 \cdot 273$
\mathbf{Et}	-0.10	432 °	4.54	2.315
Pr ⁱ	-0.19	432 °		2.315
Ac	+1.65	530	3.52	1.888
CH:CHPh	+0.41	436	3.60	$2 \cdot 294$
CH ₂ Ph	+0.22	432 ^b		2.315
CH, OPh	+0.85	448	3.23	2.232
CCPh	+1.35	513	4.78	1.949
CO₂Me	+2.00	535	3.78	1.869
	- 1 17	<u> </u>		

^a Ref. 7. ^b V. Gold and F. L. Tye, J. Chem. Soc., 1952, 2172. ^c A. G. Evans, P. M. S. Jones, and J. H. Thomas, J. Chem. Soc., 1957, 104.

The spectra of other substituted diphenylmethyl carbonium ions and the computed best line from Figure 2 4 M. S. Newman and N. C. Deno, J. Amer. Chem. Soc., 1951,

¹ C. C. Barker, M. H. Bride, G. Hallas, and A. Stamp, J. Chem. Soc., 1961, 1285.


² A. C. Hopkinson and P. A. H. Wyatt, J. Chem. Soc. (B), 1970, 530.

⁸ N. C. Deno, J. Jaruzelski, and A. Schriesheim, J. Org. Chem., 1954, 19, 155.

<sup>73, 3644.
&</sup>lt;sup>5</sup> H. C. Longuet-Higgins, J. Chem. Phys., 1950, 18, 275.
⁶ R. Grinter and S. F. Mason, Trans. Faraday Soc., 1964, 60, 264.

were used to predict σ^* values for several groups (see Table 2).

The predicted σ^* value for the cyclopropyl group is slightly positive indicating that the cyclopropyl ring is

slightly electron-withdrawing. The hydroxy-group is a very good electron-donating group and, consistent with this, is found to have a fairly large negative value of σ^* .

TABLE 2

Spectral data for other diphenylmethyl carbonium ions

 Ph_2CX and the predicted σ^* values for the corresponding substituents X.

	Highest observed		Energy of	Predicted
	wavelength,		transition	σ*
\mathbf{X}	λ_{max}/nm	log ε	$(\times 10^{-4} \text{ cm}^{-1})$	(± 0.23)
Cyclopropyl	436	4.16	$2 \cdot 293$	+0.21
OH	344 °	4.89	2.907	-2.32
C _C Me	462 ª		2.165	+0.73
CÕ₂H	543	3.82	1.842	+2.06
~				

" G. A. Olah, C. V. Pitman, jun., R. Waak, and M. Doran, J. Amer. Chem. Soc., 1966, 88, 1488.

The σ^* value of +0.73 for propyne is less than that of phenylacetylene, reflecting the more electron-withdraw-

⁷ J. Hine, 'Physical Organic Chemistry,' McGraw-Hill, 1962, pp. 85, 97. ⁸ D. Ioffe, Zhur. obshchei Khim., 1965, **35**, 1851.

ing nature of the phenyl group. Finally, the Hammett σ value for the carboxy-group is slightly larger than that for the methyl ester.⁷ This trend is again shown with the predicted σ^* for the carboxy-group of +2.06 which is slightly larger than the value of 2.00 for the methyl ester groups.

EXPERIMENTAL

The electronic spectra were measured on a Unicam SP1800 spectrophotometer with stoppered 10-mm quartz cells. The carbonium ions were produced by dissolving the corresponding alcohol in 96% sulphuric acid.

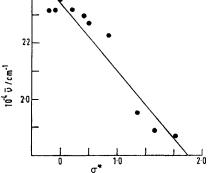
Materials .--- Methyl benzyloate, benzyloic acid, and cyclopropyldiphenylmethanol were obtained commercially.

1-Hydroxy-1,1-diphenylpropan-2-one was prepared by the method of Ioffe⁸ as needles, m.p. 62-63° (lit., ⁹ 58-60°) (from hexane).

1,1,3-Triphenylprop-2-yn-1-ol was prepared by the action of phenylethynylmagnesium bromide on benzophenone as needles, m.p. 78-80° (lit.,¹⁰ 79°) (from ethanol-water).

1,1,3-Triphenylprop-2-en-1-ol was prepared by the catalytic reduction of 1,1,3-triphenylprop-2-yn-1-ol over Lindlar catalyst in ethyl acetate. The catalyst was filtered off, the solvent was removed, and the residue was dissolved in benzene and stirred with a catalytic amount of iodine for 24 h. The iodine was removed by washing the benzene solution with sodium thiosulphate solution and the benzene layer was separated, dried (MgSO₄), and evaporated. 1,1,3-Triphenylprop-2-en-1-ol, needles, had m.p. 95-98° (lit.,¹¹ 104—106°) (from hexane).

2-Phenoxy-1,1-diphenylethanol was prepared by the reaction of phenylmagnesium bromide (0.02 mol) with methyl phenoxyacetate (0.1 mol) in dry ether, as plates, m.p. 97-99° (from ethanol-water) (Found: C, 83·1; H, 6.22. C₂₀H₁₈O₂ requires C, 82.75; H, 6.25%), m/e 273 (M - OH).


This work was supported by the National Research Council.

[2/456 Recieved, 28th February, 1972]

⁹ C. A. Buchler, H. A. Smith, K. V. Navak, and T. A. Magee, J. Org. Chem., 1961, 26, 1573.
 ¹⁰ J. Baltes and F. Volbert, Fette, Seifen, Anstrichm., 1955,

57, 660. ¹¹ I. N. Rozhkov and S. M. Makin, Zhur. obshchei Khim.,

1964, 34, 59.

